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Abstract

Background

Monitoring of symptoms and behavior may enable prediction of emerging COVID-19 hot-

spots. The COVID Radar smartphone app, active in the Netherlands, allows users to self-

report symptoms, social distancing behaviors, and COVID-19 status daily. The objective of

this study is to describe the validation of the COVID Radar.

Methods

COVID Radar users are asked to complete a daily questionnaire consisting of 20 questions

assessing their symptoms, social distancing behavior, and COVID-19 status. We describe

the internal and external validation of symptoms, behavior, and both user-reported COVID-

19 status and state-reported COVID-19 case numbers.

Results

Since April 2nd, 2020, over 6 million observations from over 250,000 users have been col-

lected using the COVID Radar app. Almost 2,000 users reported having tested positive for

SARS-CoV-2. Amongst users testing positive for SARS-CoV-2, the proportion of observa-

tions reporting symptoms was higher than that of the cohort as a whole in the week prior to a

positive SARS-CoV-2 test. Likewise, users who tested positive for SARS-CoV-2 showed

above average risk social-distancing behavior. Per-capita user-reported SARS-CoV-2 posi-

tive tests closely matched government-reported per-capita case counts in provinces with

high user engagement.
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Discussion

The COVID Radar app allows voluntarily self-reporting of COVID-19 related symptoms and

social distancing behaviors. Symptoms and risk behavior increase prior to a positive SARS-

CoV-2 test, and user-reported case counts match closely with nationally-reported case

counts in regions with high user engagement. These results suggest the COVID Radar may

be a valid instrument for future surveillance and potential predictive analytics to identify

emerging hotspots.

Introduction

The world is in the throes of the coronavirus-disease-2019 (COVID-19) pandemic with more

than 100 million cases and over 2 million confirmed deaths worldwide as of December 2020

[1]. In the Netherlands, the first case of COVID-19 was diagnosed in February 2020 and since

then over one million cases and 17,500 deaths have been confirmed [2]. To date more than

60,000 COVID-19 patients have been admitted to Dutch hospitals, with over 12,000 of these

eventually admitted to intensive care [2]–this in a country with just over 1,000 intensive care

beds [3]. The strategies of Test Trace and Isolate (TTI), and of measures intended to reduce

social contact, have been widely adopted to “flatten the curve” [4, 5]. An important limitation

of the TTI strategy is transmission of Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) by COVID-19 carriers without symptoms. Given their lack of symptoms, they

may not be tested and remain unidentified by the TTI process despite being a possible source

of viral transmission [6]. Recent studies show that this subpopulation may account for as

much as half of COVID-19 transmissions [6, 7].

An instrument to continuously monitor social-distancing behavior and symptoms in the

population at a local level may support and improve the TTI process by decreasing the delay in

identification of risk areas and populations. Research using voluntary symptom self-reporting

apps performed in the United Kingdom, the United States of America, and Israel show prom-

ising results in the local prediction of COVID-19 using symptom-based tracking [8–10]. How-

ever, we find no apps using voluntary social-distancing behavior-reporting to track local

COVID-19 hotspots.

During the first COVID-19 wave in the Netherlands, the Leiden University Medical Center

(LUMC) and the tech company ORTEC developed and introduced the COVID Radar app.

This questionnaire-based app allows individuals to anonymously report COVID-related symp-

toms and social-distancing behaviors on a regional and population level. The app provides

users with direct feedback on, and peer comparison with, their reported social-distancing

behavior and symptoms. Our theory is that tracking of symptom and social-distancing behav-

ior data at a population level can be used to identify regions where more COVID-19 cases will

subsequently occur, allowing (regional) policy makers and healthcare professionals to affect

changes to regulations earlier, and thus more effectively.

In this first descriptive study, our aim is to observe the associations between self-reported

symptoms, social-distancing behavior, and self-reported COVID-19 infection by the app’s

users (i.e. criterion validity), and the associations between these variables and state-reported

COVID-19 infections by the National Institute for Public Health and the Environment (i.e.

external validation).
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Methods

COVID radar app

The COVID radar app was released on the 2nd of April 2020 following a short publicity cam-

paign in the local and national media [11]. The app is free to download and allows for multiple

user accounts from the same household on one smartphone. The app is not age-limited, mean-

ing children are allowed to download and use the app. Over 85% of the households in COVID

radar’s user population with minors under 18 years of age are linked to an adult smartphone.

Upon first use of the app, users are asked to provide informed consent to share the following

information with the research institution as stipulated by the conditions of the European Gen-

eral Data Protection Regulation. Users may opt out by either removing the app or by request-

ing the data manager to remove all data collected from that individual. Users are asked to

register by entering the four digits of their postal code, gender (Male/Female/Other/Not Speci-

fied), age category (0–5, 6–11, 12–18, 19–29, ten-year increments from 30–80 and a category

for 80+), and occupation (healthcare, education, catering industry, or other occupation with

high risk of close contact). Following the initial setup, users are asked to report their symptoms

and behavior daily via a questionnaire. A push-reminder is sent every-other day to users

reminding them to do so. Fig 1 shows screenshots of the app and S1 Table shows a list of the

questions users are asked.

Fig 1. Screenshot of COVID radar app (Left: Questions. Right: Feedback) “Reprinted from “urlmaps.com” under

the Creative Commons Attribution License, with permission from “i-mapping”, original copyright 2021”.

https://doi.org/10.1371/journal.pone.0253566.g001
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Each observation is comprised of questions assessing symptoms, social-distancing behavior,

whether or not the user has been exposed to an individual with COVID-19 in the past 2 weeks,

and a user’s COVID-19 test history. The questions asked were periodically updated with the

addition/removal dates of each question detailed in the online supplement. Via maps displayed

within the app, users are presented with regional incidences of symptoms and personal feed-

back on their social-distancing behavior compared to regional and national means (Fig 1).

Data are transferred daily to a safe data environment within the Information Technology

system of the LUMC (S2 Fig). Following importation of the daily data, we exclude observations

from users who had requested to opt out, observations listing nonexistent postcodes, and dou-

ble measurements within one user. Given users are asked if they have tested positive for

SARS-CoV-2 within the past two weeks, we considered users SARS-CoV-2 positive/negative if

they indicated a SARS-CoV-2 test result at least twice in the app, with the date of the first

report used as day zero. More details on the development of the app, selection of the chosen

questions, (external) data sources, and data cleaning is available in the supplement. Ethical

approval was provided by the Medical Ethical Board of the LUMC (dossier number N20.067),

which gave permission to refrain from obtaining consent from parents or guardians as data

collection was anonymous. Only data on age category, profession and four digit postal code

was collected rendering the data was untraceable to an individual.

Comparison of included/excluded observations

Following the data cleaning process detailed in the online supplement, we compared the avail-

able data in the excluded cohort with that of the included cohort. For each of the binary (symp-

tom) variables collected by the app, we compared the proportion of excluded and included

observations reporting this symptom. For each of the continuous social-distancing behavior

variables, we compared the mean values for the included/excluded cohorts.

Descriptive statistics

To describe participant characteristics, we used histograms to explore age distributions of the

app users, the number of times the app was used each day, and the number of times individual

users used the app. We further compared age, gender, and profession for users ever having

tested positive with those never having tested positive for SARS-CoV-2.

Validation testing

Given the eventual goal of the COVID Radar app is to predict emerging hotspots, we tested

the expected associations between symptoms/behavior and SARS-CoV-2 test outcome. We

used user-reported test results as our outcome measure for criterion validity testing and cases

reported by the National Institute for Public Health and the Environment (RIVM) as our out-

come measure for external validation [2].

Criterion validity

As a measure of criterion validity, we explored associations between the binary symptom vari-

ables (e.g., cough, sore throat, loss of smell/taste) and the continuous social-distancing behav-

ior variables (e.g., number of house outside house, number of people within 1.5m) within the

cohort of users ever reporting a SARS-CoV-2 test. For users within this ever-tested cohort, we

used the date of the test as day 0 and observed the 21 days before and after the test. We calcu-

lated the daily mean or proportion for each variable for the entire user- cohort. We then calcu-

lated the difference between ever-positive or ever-negative users’ reported values and the mean
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values for the entire user-cohort on that day. By comparing data from the same days, we elimi-

nated bias introduced by variations in time due to the various lock-down measures imple-

mented during the observation window, as well as seasonal effects on symptoms. The mean

values and 95% confidence intervals for these differences were then plotted to show how the

ever-positive and ever-negative cohorts compared to the cohort as a whole with regard to these

variables in the days surrounding a test. Given the formulation of the question (“Have you

tested positive/negative for SARS-CoV-2 in the past two weeks”), the date of the test cannot be

determined for those answering this question in the 14 days following the implementation of

the question about testing in the app. Given this and the fact that this analysis involved looking

at the 14 days prior to a test, users reporting a SARS-CoV-2 test in the 14 days following imple-

mentation of the question about testing were not included in this analysis.

External validation

As a measure of external validation, we compared per-capita user-reported COVID-19 status

among the 12 Dutch provinces with per-capita rates as reported by RIVM over the course of

the pandemic [2]. Within each province, we plotted 7-day backward looking moving averages

of the daily proportion of users reporting each symptom variable alongside the daily nationally

reported COVID-19 case counts and the weekly proportions of users reporting each symptom

variable alongside the number of Rhinovirus cultures reported by Dutch laboratories [12]. We

further plotted daily means and 7-day backward looking moving averages of each social-dis-

tancing behavior variables and qualitatively observed how well they reflect nationally applied

lockdown-measures and holidays.

Sensitivity analyses

We repeated the above-described analyses for (a) the cohort of users using the app an above-

median number of times during the observation period, (b) the cohort excluding healthcare

professionals, and (c) the cohort excluding inhabitants of the province ’Zuid-Holland’, the

home province of the LUMC where the app was created and users were most exposed to

COVID Radar app-related media and advertisements. All statistical analyses were performed

in STATA 16.1 (StataCorp, College Station, USA). STATA syntaxes for all analyses are pro-

vided in the online supplement.

Results

In the period 2 April, 2020 to 31 January, 2021 (305 days), the COVID Radar app was down-

loaded by 278,523 unique users who filled in the in-app questionnaire 6,202,606 times. A total

of 102,445 (1.65%) observations were excluded (S4 Fig).

Comparison of included/excluded observations

The data for the 102,445 (1.65%) excluded observations were fairly representative of the

included observations’ data in terms of symptoms and behavior. However, excluded observa-

tions were less often from a health professional and showed a slightly different age distribution

(i.e. older age groups are over-represented in the excluded cohort) (see S2 Table).

Descriptive statistics

The age distribution of the app’s users showed a fairly consistent distribution of users 18–69

years old, and an under-representation of young (<18) and old (>70) users. Female users

were overrepresented compared to national figures (See S5 Fig). The number of observations
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(questionnaires answered) per day dropped from over 100,000 in the first week of the app to a

steady-state of around 10,000 observations per day during the course of the observation win-

dow (2 April, 2020 to 31 January, 2021) (See Fig 2).

The effects of the push reminder sent every-other day to all users is seen in the periodicity

in the number of observations between even and odd days. The number of daily observations

was highest in the province Zuid-Holland, the home province of the LUMC where the app was

conceived and advertised (see Fig 3).

The number of observations per user ranged from 1 to 305 with a median value of 6

(25th,75th percentiles [p25, p75] = 2, 21) (See Fig 4).

Criterion validation

From a total of 278,523 unique users, 1,981 (0.71%) reported ever testing positive and 1214

(0.44%) negative for SARS-CoV-2. Ever-positive users were more likely to be women, older

than 40 years of age, and healthcare professionals (Table 1).

The proportion of users reporting the eight symptom variables increased beginning approx-

imately 7 days prior to a positive test. This increase was smaller in the cohort of negative tested

users (Fig 5a and 5b).

The continuous social-distancing behavior-based variables likewise showed above-mean

values in this ever-positive cohort until approximately 7 days prior to a positive test, at which

point they sharply decreased to remain below-mean in the week before and after a positive

test. These fluctuations were not seen in users testing negative for SARS-CoV-2 (see Fig 6a and

6b).

Fig 2. Number of observations per day.

https://doi.org/10.1371/journal.pone.0253566.g002
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Fig 3. Number of observations per capita per province in the Netherlands.

https://doi.org/10.1371/journal.pone.0253566.g003

Fig 4. Distribution of number of observations per user.

https://doi.org/10.1371/journal.pone.0253566.g004
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External validation

As of early January 2021, almost one million cases of COVID-19 had been reported in the

Netherlands by the National Institute for Public Health and the Environment (RIVM). The

RIVM-reported daily case counts varied from 0 to over 13,000 cases per day. Positive SARS-

CoV-2 tests reported in the COVID Radar app alongside the case count as reported by the

RIVM for each province show that the association between these two is highest in provinces

with a higher number of users, especially Zuid-Holland (Fig 7).

Symptoms and social-distancing behavior varied over time, with both showing a clear tem-

poral association with RIVM-reported case counts over time (Figs 8 and 9).

Plotting the RIVM-reported number of reported positive cultures of Rhinovirus alongside

our symptom data suggests variables ‘fever’, ‘pain in the chest’ and ‘loss of smell’ are associated

with COVID-19 case count while variables ‘coughing’ and ‘sore throat’ correlated more closely

with Rhinovirus cultures (Fig 10).

The daily mean number of people within 1.5 meters declined sharply around the middle of

September, reflecting the national lockdown measures introduced, and showed peaks during

national holidays (Fig 11).

The variable ‘number of visitors’ likewise showed peaks in the period around Christmas

and New Year’s Eve (Fig 12).

Table 1. Comparison of users never vs. ever tested SARS-CoV-2 positive.

Number of days 305

Number of users 278.523

Number of observations 6.100.261

Observations per user, median and Interquartile range (IQR) 6 [2; 21]

Never SARS-CoV-2 + Ever SARS-CoV-2+

N (%) N (%)

Total 276.542 99,3% 1.981 0,71%

Gender (female) 152.515 55,2% 1.201 60,6%

Profession

Catering 259 0,1% 9 0,5%

Education 1.427 0,5% 77 3,9%

Healthcare 28.830 10,4% 372 18,8%

Other 16.510 6,0% 412 20,8%

Other_Contact 1.239 0,4% 35 1,8%

Missing 228.277 82,5% 1.076 54,3%

Age

0–5 9.033 3,3% 1 0,1%

06–11 11.273 4,1% 17 0,9%

12–18 17.635 6,4% 72 3,6%

19–29 34.309 12,4% 102 5,1%

30–39 39.305 14,2% 157 7,9%

40–49 41.887 15,1% 327 16,5%

50–59 54.718 19,8% 604 30,5%

60–69 45.993 16,6% 476 24,0%

70–79 20.292 7,3% 208 10,5%

80+ 2.097 0,8% 17 0,9%

SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pone.0253566.t001
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Sensitivity analyses

These analyses were repeated using (a) only users reporting an above median number of obser-

vations (referred to as ‘faithful’ users), (b) only users outside the province Zuid-Holland, and

(c) only non-healthcare professionals. Differences in the results for these three sensitivity

Fig 5. a) Daily reported proportion of users reporting symptoms surrounding positive SARS-CoV-2 test. b) Daily reported proportion of users

reporting symptoms surrounding negative SARS-CoV-2 test. Data with 95% confidence intervals in online supplement.

https://doi.org/10.1371/journal.pone.0253566.g005

Fig 6. a) Mean difference between SARS-CoV-2 positive users and daily means for behavior variables in the days surrounding positive SARS-CoV-2

test. Red line: no difference. (example: on day 20 before test, on average a positive tested user reported one extra person within 1.5m (blue line)

compared with the daily mean). B) Mean differences between SARS-CoV-2 negative users and daily means for behavior variables in te days

surrounding negative SARS-CoV-2 test. Data with 95% confidence intervals in supplements.

https://doi.org/10.1371/journal.pone.0253566.g006
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analyses were minimal and none of the trends seen here were reversed (data shown in

supplements).

Discussion

Since April 2020, the COVID Radar app has collected over 6 million user-provided question-

naires detailing COVID-related symptoms and social-distancing behaviors from over 275,000

unique users within the Netherlands. Symptom and behavior data were temporally associated

with user-reported SARS-CoV-2 tests. A correlation between in-app reported case count and

national-reported case counts was likewise seen, especially in provinces with high user-engage-

ment. Social-distancing behavior variables showed the expected pattern in relation to national

applied lockdown measures and holidays.

Criterion validity

Our qualitative (visual) association testing showed clear associations between both user-

reported symptoms and user-reported social-distancing behavior, and user-reported SARS-

CoV-2 test results. While not here quantified, some variables (e.g. ‘fever’, ‘pain in the chest’

and ‘loss of smell’) were more closely associated with case-count than others (e.g. ‘coughing’

and ‘sore throat’), which seemed as associated with Rhinovirus as with SARS-CoV-2. These

associations are supported by prior research [13–16]. The pattern of social-distancing behav-

iors within the cohort of users who eventually report a positive SARS-CoV-2 test was particu-

larly interesting. This cohort showed above-mean risk social-distancing behavior (e.g. more

Fig 7. Weekly proportion of SARS-CoV-2 positive users reported in the COVID Radar app and case count per capita

as reported by the RIVM for each province. (the number written beside the name of each province represents the mean

number of weekly unique users per 100.000 inhabitants in that province during the study period).

https://doi.org/10.1371/journal.pone.0253566.g007
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people within 1.5m, more visitors at home) between 20 and 10 days prior to a positive test (i.e.

the period during which transmission likely occurred), at which point their social-distancing

behavior quickly drops to a below-mean value as they became symptomatic and decided to be

tested. The extent of above mean risk behavior was lower in users eventually testing negative.

External validity

Comparing COVID radar data to external data sources showed logical (temporal) associations

in symptoms, social-distancing behavior, and test results. The strongest associations were

observed in regions with high user-engagement. Given the symptoms tracked by the app are

common both to SARS-CoV-2 and other respiratory tract infections, future efforts directed at

prediction will need to correct for Rhinovirus and other viruses using viral surveillance data

from Dutch laboratories. The extent and types of restrictions imposed on the Dutch popula-

tion varied during the observation period and their effects were clearly visible in the social-dis-

tancing variables reported by users.

Comparison of excluded and included observations showed slight differences in age distri-

bution but relative consistency in other variables. The small size of the excluded cohort mini-

mized the risk of bias being introduced via this exclusion step. There was a large variance in

the number of observations per user, with some users answering questionnaires daily while

others filled in the app only once during the observation period. While it is reasonable to

assume more faithful users may provide more accurate data, sensitivity analyses performed

using data from users with an above-median number of app entries show no significant differ-

ences as compared to our primary analyses. The lack of a clear difference in the results when

Fig 8. Symptoms vs. time alongside number of nationally reported positive SARS-CoV-2 tests (percentage of users

reporting cough, sore throat, GI (gastrointestinal) symptoms, and shortness of breath).

https://doi.org/10.1371/journal.pone.0253566.g008
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analyzing users of different engagement-levels suggests any bias introduced by differences in

the reporting habits of these users was small.

There was an overrepresentation of users from the province Zuid-Holland in our data, due

to Zuid-Holland being the home province of the LUMC, the hospital in charge of app design/

analysis. This also likely explains the over-representation of health care professionals, to whom

the app was thoroughly advertised within the environment of the LUMC. Despite this overrep-

resentation, our sensitivity analyses excluding Zuid-Holland users and healthcare professionals

showed similar results, suggesting any bias introduced by their overrepresentation is minimal.

COVID radar users were more often female and middle-aged. This was due to the overrepre-

sentation of healthcare workers (who were more often female and mid-aged). However the

sensitivity analysis excluding healthcare workers resulted in no different conclusions.

Noteworthy too is the fact that fully 30% of those users reporting a positive SARS-CoV-2

test reported no symptoms on the day of the positive test (data shown in S8 Fig). This is in line

with the estimated number of COVID-19 carriers without symptoms, as reported by other

studies [6, 7]. Our analysis likewise showed loss of smell and cough may continue for weeks

following the positive SARS-CoV-2 test, as also confirmed in previous studies [17].

Limitations

All data in the app was self-reported and thus subjected to differences in personal interpreta-

tion of the questions. However, we do not expect differential misclassification as we see logical

trends in symptoms and behavior on both individual and national levels. State-reported case

counts were those reported by RIVM, whose data should include tests performed in private

practices as they are required to be forwarded to RIVM. However, as there is no oversight for

Fig 9. Symptoms vs. time alongside number of nationally reported positive SARS-CoV-2 tests (percentage of

users reporting pain in chest, fever, loss of smell, swollen eyes).

https://doi.org/10.1371/journal.pone.0253566.g009
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this process, the RIVM-reported case-counts likely represent under-estimates of the number

of confirmed cases [18].

COVID radar additionally provided direct feedback to users on how their symptoms and

behavior compared to their peers which likely has an effect on user behavior. This may bias the

generalizability of COVID radar data, especially behavioral data. The effect of this feedback

loop on users’ behavior would be expected to lead to an overly conservative estimate of the

behavior of the population. Despite this, expected changes in reported behavior in the periods

following national holidays and changes to social distancing policies are observed in COVID

radar data. Additionally, altered behavior due to app-feedback would be expected to be

observed in more loyal users of the app. Our sensitivity analysis on loyal users showed no sig-

nificant difference in reported behavior. Given these realities, while we accept that app feed-

back altering user behavior has the potential to bias our results, we feel any bias introduced has

been shown here to be small.

Testing capacity in the Netherlands was low during the developmental stage of the app and

has increased during the study period. In the final months of 2020, testing was expanded to

include those without symptoms. As a result, the prevalence of COVID-19 in the Netherlands

could be underestimated. Because of this change in testing policy, the question regarding nega-

tive tests was implemented at a later date resulting in less data about negative tests compared

to data on positive tests during a shorter period of time. Nonetheless, we were able to show

that the association between symptoms and a negative test is less apparent than their associa-

tions with a positive test, suggesting our conclusions remain valid. Also, testing of the

Fig 10. Symptoms vs. time (weekly) alongside number of nationally reported positive cultures of Rhinovirus

(percentage of users reporting symptoms).

https://doi.org/10.1371/journal.pone.0253566.g010
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underaged (<12 years) was rare during the study period, resulting in a relatively old SARS-

CoV-2 positive cohort in this study.

Future implications

Having validated the expected associations between symptoms, social-distancing behavior,

and COVID case-count, our next steps will involve attempted prediction of emerging hotspots

by combining symptom and social-distancing behavior data to quantify risk of COVID-19

cases. Such predictions could be used to help guide COVID-19 policy. Our study indicated the

quality of the submitted data is best where user-engagement is high. Prediction-based goals

will thus be aided by increasing user count. Regional predictions may additionally be improved

through incorporation of data from general practitioners, more detailed demographic data,

and mobility data using a machine learning based approach. Another possibility for further

research is testing of associations between regional SARS-CoV-2 cases, symptoms, behavior

and other regional data related, for example, to the physical environment.

Conclusion

The COVID Radar app successfully collects anonymous, user-reported data on COVID-

19-related symptoms and social-distancing behavior. Initial validation showed symptoms and

behavior reported within the app are correlated with in-app reporting of a SARS-CoV-2 test.

The predictive potential of the COVID Radar is demonstrated as external validation showed

Fig 11. Daily mean number of people within 1.5 meters (with 7-day backward-looking moving average in black)

September: Closing of restaurants. December: holidays, followed by closing of non-essential shops.

https://doi.org/10.1371/journal.pone.0253566.g011
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in-app reported positive SARS-CoV-2 tests track well with state-reported case counts. Future

research will focus on regional predictions using these data.

Supporting information

S1 Fig. Screenshot of the app. “Reprinted from “urlmaps.com” under the Creative Commons

Attribution License, with permission from “i-mapping”, original copyright 2021”.

(TIF)

S2 Fig. Dataflow of data in COVID radar.

(TIF)

S3 Fig. Overview of data cleaning.

(TIF)

S4 Fig. Flowchart of Inclusion of data.

(TIF)

S5 Fig. Age and gender distribution of app’s users compared to national data.

(TIF)

S6 Fig. Mean difference between values of users reporting symptoms and daily proportion

per day surrounding positive SARS-CoV-2 test (red line: No difference with daily propor-

tion) with 95% confidence intervals.

(TIF)

Fig 12. Daily mean number of visitors vs. time (with 7-day backwards moving average). Peaks are seen during

Christmas and New Year’s Eve. The fifth of December is a holiday in the Netherlands known as “Sinterklaasavond”.

https://doi.org/10.1371/journal.pone.0253566.g012

PLOS ONE COVID RADAR app: Validation of symptoms and behavior in relation to COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0253566 June 30, 2021 15 / 18



S7 Fig. Mean difference between values of users reporting behavior and daily means per

day surrounding positive SARS-CoV-2 test (red line: No difference with daily mean) with

95% confidence intervals.

(TIF)

S8 Fig. Proportion of users asymptomatic per day surrounding positive SARS-CoV-2

test.

(TIF)

S9 Fig. Mean difference between number of symptoms reported by users reporting symp-

toms and daily mean number per day surrounding positive SARS-CoV-2 test (red line: No

difference with daily proportion) with 95% confidence intervals.

(TIF)

S10 Fig. As S6 Fig, but than for negative SARS-CoV-2 test.

(TIF)

S11 Fig. As. S7 Fig, but than for negative SARS-CoV-2 test.

(TIF)

S12 Fig. As S8 Fig, but than for negative SARS-CoV-2 test.

(TIF)

S13 Fig. As S9 Fig, but than for negative SARS-CoV-2 test.

(TIF)

S14 Fig. Daily mean number of hours out of house (with 7-day backward moving average

in black).

(TIF)

S15 Fig. Daily proportion of users working/going to school outside of house (with 7-day

backward moving average in black).

(TIF)

S16 Fig. Daily mean number of persons spoken with within 1.5 meters (with 7-day back-

ward moving average in black).

(TIF)

S1 File. Syntax importation data STATA.

(DO)

S2 File. Syntax selection of exclusions STATA.

(DO)

S3 File. Syntax importation external data STATA.

(DO)

S4 File. Syntax cleaning data STATA.

(DO)

S5 File. Syntax analyzes data, generation figures and sensitivity analyzes.

(DO)

S6 File. Supplemental text overview of development of the app.

(DOCX)
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S7 File. Sensitivity analyses (S5–S16 Figs repeated without below median reporting users,

healthcare professionals and inhabitants of the province Zuid-Holland).

(ZIP)

S1 Table. Overview of questions asked in the app.

(XLSX)

S2 Table. Comparison of excluded and included data.

(XLSX)
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